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Abstract. Recently Ravndal and Lutken have discovered that the partition function for 
fermionic fields at finite temperature possesses a remarkable symmetry under inversion of 
the temperature parameter. In this communication we extend their analysis for the finite 
temperature Casimir effect of scalar fields. As an application of the temperature inversion 
symmetry idea we show how, from the Casimir energy at zero temperature, to obtain the 
Stefan-Boltzmann law of a Bose gas in the thermodynamic limit. We then show that in 
(3 + 1) dimensions the partition function can be written in a closed form where the inversion 
symmetry is explicit. 

1. Introduction 

In 1948 Casimir [ l ]  showed that there is an attractive force between two parallel, 
perfectly conducting, infinite plates due to electromagnetic field fluctuations. Since 
then many studies, both theoretical and experimental, have been made on this subject 
(see for example the review article [2]). Later studies on thermal fluctuation effects 
have also been included [3]. 

It has been noticed recently that the ratio of the free energies of bosonic and 
fermionic systems is the same at low and high temperature [4]. This fact has motivated 
some interest in the investigation of the symmetry properties of these systems under 
‘temperature inversion’. Recently Gundersen and Ravndal [5] showed that the scaled 
free energy of fermionic fields between parallel MIT-plates separated by L satisfies 

where the function 

and 6 = LT are dimensionless in units where the Boltzmann constant is one. In order 
to clarify these results Luken and Ravndal [ 6 ]  used functional methods to examine 
the partition function for the above system. Their results were expressed in terms of 
Epstein’s zeta-function where the low-high temperature symmetry is easily seen. 

In this paper we will examine the temperature inversion symmetry for the scalar 
version of the Casimir effect at finite temperature. We will consider massless scalar 
fields trapped inside two infinite plates separated by a distance L but otherwise free. 
As is well known, the vacuum energy is not a well defined quantity, being formally 
infinite. For massless fields, problems will appear due to the zero mode and also due 
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to the large eigenvalues. The second kind of divergence is common and will be 
regularised by zeta-function techniques while the divergences associated with the zero 
eigenvalue will be dealt with by dimensional regularisation [7]. The regularised free 
energy will be shown to exhibit the ‘inversion temperature symmetry’. In section 3 we 
illustrate these ideas with a simple application where this symmetry is used to obtain, 
from the Casimir energy at zero-temperature, the results of statistical mechanics for a 
Bose gas at high temperature (and vice versa). In section 4 we show that in four 
spacetime dimensions the free energy can be summed up exactly and be written in a 
closed form. 

2. Casimir energy at finite temperature 

Following [ 6 ]  we will formulate this problem using functional methods. In this 
formalism the temperature dependence of the fields is obtained by compactification 
of the imaginary time direction to a circle S’ of size P, where P is the inverse temperature. 
The Casimir effect is obtained by compactifying the fields in the direction perpendicular 
to the plates with period L. In  other words we are considering the case of fields in a 
flat d-dimensional spacetime with the topology of T 2  x Rd-’ .  A direct generalisation, 
the case of a hyperbox with p sides and topology T P  x R d - p ,  which is straightforwardly 
obtained from our results, will not be considered here. Other choices of boundary 
conditions may alter the value of the Casimir energy but will not influence the discussion 
of the symmetry under study. The partition function for the case of massless scalar 
fields at finite temperature can be expressed in terms of the functional determinant of 
the Klein-Gordon operator after one Gaussian integration 

The spectrum for the Klein-Gordon operator, in conformity with the boundary condi- 
tions, is 

2 mn = ( y ) 2 + ( y ) 2 + k ;  n , m = 0 , * 1 , * 2  , . . .  (4) 

where k ,  is the momentum flowing in the transverse directions. Notice that a singularity 
appears due to the zero mode (ZM)  of the operator, i.e., n = m = 0 and vanishing 
transverse momentum. The free energy is defined by 

( 5 )  z = e-PF. 

Therefore 

1 

2P 
F = -- In det( -aZ). 

Making use of the identity 

In det M = Tr In M 

the free energy can be expressed as 

1 1 dd-’kT [ (2;)‘  ( 2 ~ ) ~ ]  
F=-Trln(-a2)=-  - In k:+ - + - 2P 2 p  m,n=--ic ( 2 7 r ) d - 2  
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where one must sum over all eigenvalues. Here we are considering a d-dimensional 
spacetime where the plates are objects of dimension ( d  - 2 ) .  To make use of the results 
of dimensional regularisation we shall consider ( d  - 2 )  as a continuous parameter and 
keep n and m as integers. Making use of the DR result 

the free energy becomes 

F = - -  1 r [ ( 2 - d / 2 ) ]  [ ( 2 3 2 + ( 2 3 2 3 ( d - 2 ) / 2  
2 p  (4T)(d-2) ’2  m, n 

We are now in position to consider the ZM which, in the massless case, is an ill defined 
problem due to strong infrared ( I R )  divergences. Following the usual procedure we 
introduce a small mass, as a cut-off, to regulate the I R  part of the integral (9). Then 
we obtain 

ddk 
ZM = I (2.rr)d 1n(k2+&). 

We may evaluate the integral as we did before but must be careful to remove the I R  

cut-off only after we have analytically returned to the neighbourhood of d dimensions, 
in which the integral is I R  convergent. When the operation is done in this order the 
ZM is seen to vanish. From now on one must understand the double summation with 
the term n = m = 0 absent. The divergences due to the other values of n and m are 
still present and must be removed. We will make use of the Poisson summation formula 
(PSF) [ 8 ]  to extend analytically the exponent in the sum to negative values where it is 
a convergent sum and at same time remove the divergent gamma function that appears 
in (10). Making use of the integral representation of the gamma function we have 

c [ ( r 1 0 2 +  m21rz dxxz-l e - ( n 2 c 2 + m 2 ) x  

m, n m, n 

where we have made use of the two-dimensional version of the PSF in the second line. 
Inserting this result into the free energy one gets 

where Zz(a, b, z )  is the Epstein zeta-function [ 9 ] .  One can observe that the troublesome 
gamma-function appearing in (10) has been cancelled. Let us introduce a function 
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From the definition of the Epstein zeta-function one easily sees that 

and from (13) and (14) we find that 

which expresses the symmetry of the system under temperature inversion. What can 
be seen from this formula is that for a fixed geometry the Casimir energy for massless 
scalar fields at zero temperature is essentially given by the free energy of a Bose gas 
at high temperature as expressed by the Stefan-Boltzmann law for black-body radiation 
[lo]. 

3. An example 

To illustrate the use of these ideas let us consider the case of a hyperbox of volume 
V =  L ,  . . . Ld at temperature P - ' .  In the high temperature limit ( P  << Lk) or the case 
of a large box one can use purely dimensional arguments to write the partition function 
as 

where C ( d )  is a number that depends on the dimension of the space and will be 
determined from the results of the Casimir energy. On the other hand the Casimir 
energy at zero temperature can be obtained from the 'inversion temperature' idea. In 
this situation one has Ll  << P ,  Lk ; k # 1 which corresponds the case of parallel plates 
of area S = L 2 L 3 . .  . Ld separated by a small distance L ,  at low temperature. The 
Casimir partition function is obtained from the high temperature partition function 
by interchanging P f* L1 

PL, . . . Ld 
L: 

In 2 = C ( d )  

Applying the thermodynamic relation 

1 
E = - - 1 n Z  

P 
we obtain the energy per unit transverse area 

C ( d )  
L: 

eo= --. 
The Casimir energy is the vacuum energy for fields confined in a bounded region 

1 
2 ,  

E o = - C  w,  

and on may be obtained from (4) above for large P. Then 
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The transverse integral can be evaluated using the results of DR 

l o ~ ~ [ k ~ + ( ~ ) 2 ] ” 2 = - ( ~ )  nJ;; *+ ’  r ( F ) .  

Then 

= - (9) r ($) c( - d ) 

where l ( z )  is the Riemann zeta-function [ l l ] .  Using the ‘reflection formula’, l ( z )  is 
analytically continued to negative values of z 

The regularised Casimir energy then becomes 

r [ ( d  + 1)/215(d + 1)  _I_ 
E o =  - 

.rr(d+1)/2 I!.* 

Comparing the results (19) and  (25) we arrive at 

In three space dimensions one gets the result 

7T2 v 
90 P 

l n Z = - T  

where V is the volume of the box. Finally the free energy per unit volume is, using 
the results above, equal to 

T4 E T’ 

V 90 
_ -  - -- 

which is the well known result from statistical mechanics. 

4. An exact solution in four dimensions 

In this section we want to show that in four spacetime dimensions one can write the 
scaled free energy f(C) in a closed form as 

which is seen to satisfy the inversion temperature symmetry, (15) ,  trivially. To this 
end we rewrite the free energy, (8), as 
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Extending the integral to d-continous dimensions and making use of the results of DR 

of the previous sections we obtain 

F =  z * - l . d - l  lim (&) m,n ddk [ k 2 +  ( 2 3  - + -  (22n)’]’” 

- 

Making use of the reflection formula, (24), the free energy can then be written as 

Defining the scaled free energy f( 6 )  as 

we obtain the desired result 

f(0 = ((1 + 5’). (34) 
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